翻訳と辞書 |
Catalan's constant : ウィキペディア英語版 | Catalan's constant In mathematics, Catalan's constant ''G'', which occasionally appears in estimates in combinatorics, is defined by : where ''β'' is the Dirichlet beta function. Its numerical value () is approximately :''G'' = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 … It is not known whether ''G'' is irrational, let alone transcendental. Catalan's constant was named after Eugène Charles Catalan. ==Integral identities== Some identities include : : : : : : : *If K(''t'') is a complete elliptic integral of the first kind, then : *With Gamma function : *The integral : :is a known special function, called the Inverse tangent integral, and was extensively studied by Ramanujan.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Catalan's constant」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|