翻訳と辞書
Words near each other
・ Catalan State-Proletarian Party
・ Catalan surface
・ Catalan symbols
・ Catalan Talgo
・ Catalan Transversal Range
・ Catalan Unity
・ Catalan vault
・ Catalan verbs
・ Catalan Way
・ Catalan Way 2014
・ Catalan Wikipedia
・ Catalan wine
・ Catalan Workers Bloc
・ Catalan Workers' Left
・ Catalan's conjecture
Catalan's constant
・ Catalan's minimal surface
・ Catalan's triangle
・ Catalan, Lord of Monaco
・ Catalana
・ Catalana (moth)
・ Catalana sandrangato
・ Catalana vohilava
・ Catalani
・ Catalano
・ Catalano House
・ Catalanodytes
・ Catalanotoxotus
・ Catalanotoxotus nivosus
・ Catalanotoxotus pauliani


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Catalan's constant : ウィキペディア英語版
Catalan's constant
In mathematics, Catalan's constant ''G'', which occasionally appears in estimates in combinatorics, is defined by
:G = \beta(2) = \sum_^ \frac = \frac - \frac + \frac - \frac + \cdots \!
where ''β'' is the Dirichlet beta function.
Its numerical value () is approximately
:''G'' = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 …
It is not known whether ''G'' is irrational, let alone transcendental.
Catalan's constant was named after Eugène Charles Catalan.
==Integral identities==
Some identities include
:G = \int_0^1 \int_0^1 \frac \,dx\, dy \!
:G = -\int_0^1 \frac \,dt \!
:G = \int_^ \frac \;dt \!
:G = \frac \int_^ \frac \;dt \!
:G = \int_0^ \ln ( \cot(t) ) \,dt \!
:G = \int_0^\infty \arctan (e^) \,dt \!
:G = \int_1^\infty \frac \,dt \!
*If K(''t'') is a complete elliptic integral of the first kind, then
: G = \frac \int_0^1 \mathrm(t)\,dt \!
*With Gamma function \Gamma(x+1) = x!
: G
= \frac \int_0^1 \Gamma(1+\tfrac)\Gamma(1-\tfrac)\,dx
= \frac \int_0^\tfrac12\Gamma(1+y)\Gamma(1-y)\,dy
*The integral
: G = \text_2(1)=\int_0^1 \frac\,dt. \!
:is a known special function, called the Inverse tangent integral, and was extensively studied by Ramanujan.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Catalan's constant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.